Abstract

Systemic scleroderma may serve as a paradigm for orphan diseases where the rarity, different subsets and fluctuating disease activity constitute major obstacles of research into mechanisms and therapeutic development. Recently, significant advances in the detailed understanding of the functioning of growth factors, their receptors and of the physiology of the connective tissue have been achieved. In particular, an improved concept was developed for the pathophysiology of scleroderma, highlighting the role of hypoxia, cellular stress and a concert of interacting cytokines. Tyrosine kinases have been shown to regulate the activity of a number of cytokines and growth factors, e.g. transforming growth factor-beta and platelet-derived growth factor, which play a central role in the pathophysiology of SSc. Novel pharmacological compounds interacting with signalling cascades induced by hypoxia and intracellular signal transduction pathways of mesenchymal cells, e.g. tyrosine kinase inhibitors, are currently being investigated for the treatment of this life-threatening disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.