Abstract

The breakpoint distance is one of the most straightforward genome comparison measures. Surprisingly, when it comes to define it precisely for multichromosomal genomes with both linear and circular chromosomes, there is more than one way to go about it. In this paper we study Single-Cut-or-Join (SCJ), a breakpoint-like rearrangement event for which we present linear and polynomial time algorithms that solve several genome rearrangement problems, such as median and halving. For the multichromosomal linear genome median problem, this is the first polynomial time algorithm described, since for other breakpoint distances this problem is NP-hard. These new results may be of value as a speedily computable, first approximation to distances or phylogenies based on more realistic rearrangement models.KeywordsPolynomial SolutionAdjacency GraphCircular ChromosomeRearrangement EventCircular GenomeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.