Abstract

We present the design, implementation and application of SCIRun, a scientific programming environment that allows the interactive construction, debugging and steering of large scale scientific computations. Using this workbench, a scientist can design and modify simulations interactively via a dataflow programming model. SCIRun enables scientists to design and modify models and automatically change parameters and boundary conditions as well as the mesh discretization level needed for an accurate numerical solution. As opposed to the typical off-line simulation mode - in which the scientist manually sets input parameters, computes results, visualizes the results via a separate visualization package, then starts again at the beginning - SCIRun closes the loop and allows interactive steering of the design and computation phases of the simulation. To make the dataflow programming paradigm applicable to large scientific problems, we have identified ways to avoid the excessive memory use inherent in standard dataflow implementations, and have implemented fine-grained dataflow in order to further promote computational efficiency. In this paper, we describe applications of the SCIRun system to several problems in computational medicine. In addition, an we have included an interactive demo program in the form of an application of SCIRun system to a small electrostatic field problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.