Abstract
MurG and MraY, essential enzymes involved in the synthesis of bacterial peptidoglycan, are difficult to assay because the substrates are lipidic and hard to prepare in large quantities. Based on the use of Escherichia coli membranes lacking PBP1b, we report a high-throughput method to measure the activity of MurG and, optionally, MraY as well. In these membranes, incubation with the two peptidoglycan sugar precursors results in accumulation of lipid II rather than the peptidoglycan produced by wild-type membranes. MurG was assayed by addition of UDP-[3H]N-acetylglucosamine to membranes in which lipid I was preformed by incubation with UDP-N-acetyl-muramylpentapeptide, and the product was captured by wheat germ agglutinin scintillation proximity assay beads. In a modification of the assay, the activity of MraY was coupled to that of MurG by addition of both sugar precursors together in a single step. This allows simultaneous detection of inhibitors of either enzyme. Both assays could be performed using wild-type membranes by addition of the transglycosylase inhibitor moenomycin. Nisin and vancomycin inhibited the MurG reaction; the MraY-MurG assay was inhibited by tunicamycin as well. Inhibitors of other enzymes of peptidoglycan synthesis--penicillin G, moenomycin, and bacitracin--had no effect. Surprisingly, however, the beta-lactam cephalosporin C inhibited both the MurG and MraY-MurG assays, indicating a secondary mechanism by which this drug inhibits bacterial growth. In addition, it inhibited NADH dehydrogenase in membranes, a hitherto-unreported activity. These assays can be used to screen for novel antibacterial agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.