Abstract

Eulytite-type Ba3RE(PO4)3 (RE = Y, La, and Lu) single crystals were synthesized by the floating zone method, and their scintillation properties were investigated. The powder X-ray diffraction measurement revealed that the single phase of Ba3RE(PO4)3 samples were successfully synthesized. The samples exhibited a luminescence peak due to self-trapped exciton at around 400 nm under vacuum ultraviolet and X-ray irradiation. The X-ray-induced scintillation decay time constants of the samples were several microseconds at room temperature. In the 241Am α-ray irradiated pulse height spectra, all the samples showed a clear full energy peak, and the absolute light yields of the Ba3Y(PO4)3, Ba3La(PO4)3, and Ba3Lu(PO4)3 single crystals were estimated to be 960, 1160, and 1220 ph/5.5 MeV-α, with a typical error of ±10%, respectively. The scintillation light yields of the Ba3RE(PO4)3 have been quantitatively clarified for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call