Abstract

A scintillation model is developed for uplink-downlink optical communication channels applicable in moderate to strong fluctuation conditions that may arise under large zenith angles between transmitter and receiver. The model developed here is an extension of a recently published theory that treats irradiance fluctuations along a horizontal path as a modulation of small-scale scintillation by large-scale scintilla- tion. For a downlink path the scintillation index is modeled like that of an infinite plane wave, and for an uplink path we consider a spherical wave model. In both cases the scintillation index agrees with conventional weak-fluctuation-theory results out to zenith angles of 45 to 60 deg. The covariance function of irradiance fluctuations is also developed under the same conditions as assumed for the scintillation index. On a downlink path under small zenith angles the implied correlation length is propor- tional to the Fresnel-zone scale. For zenith angles exceeding 85 deg, the downlink correlation length varies directly with the spatial coherence ra- dius weighted by a factor that depends on changes in C n the refractive index structural parameter with altitude. © 2000 Society of Photo-Optical Instru- mentation Engineers. (S0091-3286(00)02412-0)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.