Abstract

Our purpose was to analyze regional intrapulmonary volumes and dimensions (especially heights) between total lung capacity and residual volume in upright and head-down healthy men. This analysis was based on the combination of previously obtained scintigraphic data of regional alveolar expansions and of lung shape. This analysis demonstrated that the changes in height were markedly smaller for the apical zones than for the diaphragmatic zones, especially in upright posture but to a smaller extent in head-down posture also. These changes in height in upright posture were attributable to the additive effects of changes in lung shape (which favored larger height changes in the more diaphragmatic zones) and the effects of the changes in regional alveolar expansion (which caused larger volume changes in the diaphragmatic zones). In head-down posture the effects of changes in lung shape (which again favored larger height changes in the diaphragmatic zones except at high volumes) were only partially counteracted by the now inverted changes in alveolar expansion. These height changes were qualitatively in agreement with the cephalad displacement of the minor fissure during lung inflation from residual volume to total lung capacity in both postures, measured previously on chest X-rays. In conclusion, this study shows that the gravitational distributions of alveolar expansion, as assessed by scintigraphy, go along with more complex shape-dependent distributions of regional dimensions and volumes as assessed, e.g., by radiological techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call