Abstract

Abstract. All organisms are ultimately dependent on a large diversity of consumptive and non-consumptive interactions established with other organisms, forming an intricate web of interdependencies. In 1992, when 1700 concerned scientists issued the first “World Scientists' Warning to Humanity”, our understanding of such interaction networks was still in its infancy. By simultaneously considering the species (nodes) and the links that glue them together into functional communities, the study of modern food webs – or more generally ecological networks – has brought us closer to a predictive community ecology. Scientists have now observed, manipulated, and modelled the assembly and the collapse of food webs under various global change stressors and identified common patterns. Most stressors, such as increasing temperature, biological invasions, biodiversity loss, habitat fragmentation, over-exploitation, have been shown to simplify food webs by concentrating energy flow along fewer pathways, threatening long-term community persistence. More worryingly, it has been shown that communities can abruptly change from highly diverse to simplified stable states with little or no warning. Altogether, evidence shows that apart from the challenge of tackling climate change and hampering the extinction of threatened species, we need urgent action to tackle large-scale biological change and specifically to protect food webs, as we are under the risk of pushing entire ecosystems outside their safe zones. At the same time, we need to gain a better understanding of the global-scale synergies and trade-offs between climate change and biological change. Here we highlight the most pressing challenges for the conservation of natural food webs and recent advances that might help us addressing such challenges.

Highlights

  • In 1992, when scientists from around the world issued the first “World Scientists’ Warning to Humanity” (UCS, 1992) they already emphasized the importance of protecting what they called the “interdependent web of life (...) whose interactions and dynamics we only imperfectly understand”

  • Ecologists were well aware of the importance of food webs in structuring natural ecosystems even before ecology emerged as a discipline (e.g. Darwin, 1859); until recently, we lacked the tools that allowed us to make sense of the apparent mess of biotic interactions (Lawton, 1995)

  • The field was still incipient at the time the first World Scientists’ Warning to Humanity (UCS, 1992), since we have learned a great deal about the structure of food webs and how it relates to community functioning and persistence (Bascompte and Jordano, 2007; Fontaine et al, 2006; Pocock et al, 2012; Rumeu et al, 2017; Tylianakis et al, 2010)

Read more

Summary

The “interdependent web of life”

In 1992, when scientists from around the world issued the first “World Scientists’ Warning to Humanity” (UCS, 1992) they already emphasized the importance of protecting what they called the “interdependent web of life (...) whose interactions and dynamics we only imperfectly understand”. Perhaps due to the intrinsic difficulties of delivering strong predictions regarding the stability and functioning of such interdependent webs, over the last 30 years, the need to halt climate change and protect threatened species has been the focus of most media attention. During this period, scientists have fully embraced the quest of understanding the structure and dynamics of the underlaying web of life and produced staggering advances

All life is imbedded in a complex web of interactions
The architecture of biodiversity
Patterns and mechanisms of food web disruption
Patterns
Mechanisms
Forecasting food web collapse
Concluding remarks
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.