Abstract
Regular Expressions (RegEx) can be employed as a technique for supervised learning to define and search for specific patterns inside text. This work devised a method that utilizes regular expressions to convert the reference style of academic papers into several styles, dependent on the specific needs of the target publication or conference. Our research aimed to detect distinctive patterns of reference styles using RegEx and compare them with a dataset including various reference styles. We gathered a diverse range of reference format categories, encompassing seven distinct classes, from various sources such as academic papers, journals, conference proceedings, and books. Our approach involves employing RegEx to convert one referencing format to another based on the user's specific preferences. The proposed model demonstrated an accuracy of 57.26% for book references and 57.56% for journal references. We used the similarity ratio and Levenshtein distance to evaluate the dataset's performance. The model achieved a 97.8% similarity ratio with a Levenshtein distance of 2. Notably, the APA style for journal references yielded the best results. However, the effectiveness of the extraction function varies depending on the reference style. For APA style, the model showed a 99.97% similarity ratio with a Levenshtein distance of 1. Overall, our proposed model outperforms baseline machine learning models in this task. This study introduces an automated program that utilizes regular expressions to modify academic reference formats. This will enhance the efficiency, precision, and adaptability of academic publishing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advances in Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.