Abstract

Honey bees provide excellent opportunities for studying development, behavior, and defenses against natural parasites and pathogens. They are also a critical component of modern agriculture, through their leading role in pollinating the world’s crops (Aizen and Harder, 2009). Research and diagnostic methods for honey bees require efficient sampling methods for all colony members, often involving a large number of individual bees. As one example, surveys of honey bees for their pathogens require substantial sample sizes within colonies, especially when there is variation across individuals in infection rate or pathogen loads. This need for greater sampling must be balanced by the expenses involved with collecting and screening numerous colony members. In the case of whole-colony surveys for pathogens, mass extractions from adult workers require scaled up amounts of expensive reagents and, as a result, most such surveys have been limited to a small subset of colony members (vanEngelsdorp et al., 2009). Further, collections of adult workers are likely to contain bees of varied ages and levels of pathogen exposure. For pathogens that are inherited vertically (e.g., many viruses, Chen et al., 2006a, b; Yue et al., 2007; de Miranda and Fries, 2008) it can be more informative to collect embryos as an indicator of pathogen risk. When transmission efficiency from queens to their embryos is variable, such collections need to be made on many individual embryos in order to ensure correct diagnoses. Mass removal of viable embryos can also be used as a screening tool for genetic traits of interest including genetic transformation events and, in principle, an efficient first step in programs for in vitro rearing of honey bee

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call