Abstract

This article investigates graphite-aluminum oxide hybrid nanoparticles in water-base fluid with the addition of heat generation in the presence of a porous medium. The problem is formulated in terms of momentum and energy equations with sufficient initial and boundary conditions. The solution is investigated by using the Laplace transform method. It is observed that the velocity of the drilling fluid is controlled by adding hybrid nanoparticles as compared to simple nanofluids. In a similar way, the temperature of the fluid is reduced. Also, the heat transfer rate is boosted up to 37.40741% by using hybrid nanofluid compared to regular nanofluid. Moreover, the heat transfer rate was increased up to 11.149% by using different shapes of nanoparticles in the base fluid water. It is also observed that by using hybrid nanofluid skin fraction is boosted up at y = 0 and boosted down at y = 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.