Abstract
Scientific publication retrieval/recommendation has been investigated in the past decade. However, to the best of our knowledge, few efforts have been made to help junior scholars and graduate students to understand and consume the essence of those scientific readings. This paper proposes a novel learning/reading environment, OER-based Collaborative PDF Reader (OCPR), that incorporates innovative scaffolding methods that can: 1. auto-characterize student emerging information need while reading a paper; and 2. enable students to readily access open educational resources (OER) based on their information need. By using metasearch methods, we pre-indexed 1,112,718 OERs, including presentation videos, slides, algorithm source code, or Wikipedia pages, for 41,378 STEM publications. Based on the computational information need, we use text mining and heterogeneous graph mining algorithms to recommend high quality OERs to help students better understand the scientific content in the paper. Evaluation results and exit surveys for an information retrieval course show that the OCPR system alone with the recommended OERs can effectively assist graduate students better understand the complex STEM publications. For instance, 78.42% of participants believe the OCPR system and recommended OERs can provide precise and useful information they need, while 78.43% of them believe the recommended OERs are close to exactly what they need when reading the paper. From OER ranking viewpoint, MRR, MAP and NDCG results prove that learning to rank and cold start solutions can efficiently integrate different text and graph ranking features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.