Abstract

Aim: scientific forecasting toxicity and evaluation potential hazard of the biological action of aluminum oxide nanoparticles for human health. Methods: forecasting toxicity and assessment of potential hazards was carried out according to the results of forecasting-analytical modeling complexes of indicators characterizing physico-chemical, molecular biological, biochemical, cytological and ecological properties with calculation coefficients of hazard (D) and incompleteness of data evaluation (U) of nanoscale aluminum. Own research on the establishment of size and shape of nanomaterial were performed using dynamic laser light scattering and scanning electron microscopy, specific surface area were determined by the method of Brunauer, Emmet and Taylor. Results: aluminum oxide nanoparticles have a size of 30-40 nm, specific surface area 113 m2/g insoluble in water, superhydrophobic, have an effective positive charge. They are have the ability to generate reactive oxygen, damage DNA, disrupt protein expression, depolarize cell membrane, cause morphological changes and cell death, disturb the mitochondrial metabolism, impact on proteomic and metabolic profiles, inducing pro-inflammatory cytokine interleikin-1, ß, tumor necrosis factor and cluster of differentiation 86, 80 and 40. Besides, the material under investigation has such long-term effects of aaction: carcinogenicity and immunotoxicity. Conclusions: based on the results of forecasting modeling, established: aluminum oxide nanoparticles have a high degree of potential hazard for human health (coefficient D = 2,202 that is included in the range 1,780-2,449 and correspond to a high degree of potential hazard). The results indicate necessity for toxicological studies and preparation toxicological-hygienic characteristics of aluminum oxide nanoparticles at various routes of intake for development of effective preventive measures of negative impact on workers and consumers in contact with nanoproducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call