Abstract

The ubiquity of on-demand cloud computing resources enables scientific researchers to dynamically provision and consume compute and storage resources in response to science needs. Whereas traditional HPC compute resources are often centrally managed with a priori CPU-time allocations and use policies. A long term goal of our work is to assess the efficacy of preserving the user environment (compilers, support libraries, runtimes and application codes) available at a traditional HPC facility for deployment into a VM environment, which can then be subsequently used in both private and public scientific clouds. This would afford greater flexibility to users in choosing hardware resources that suit their science needs better, as well as aiding them in transitioning onto private/public cloud resources. In this paper we present work in-progress performance results for a set of benchmark kernels and scientific applications running in a traditional HPC environment, a private VM cluster and an Amazon HPC EC2 cluster. These are the OSU MPI micro-benchmark, the NAS Parallel macro-benchmarks and two large scientific application codes (the UK Met Office's MetUM global climate model and the Chaste multi-scale computational biology code) respectively. We discuss parallel scalability and runtime information obtained using the IPM performance monitoring framework for MPI applications. We were also able to successfully build application codes in a traditional HPC environment and package these into VMs which ran on both private and public cloud resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.