Abstract

Drought in the United Kingdom is a “hidden” pervasive risk, defined and perceived in different ways by diverse stakeholders and sectors. Scientists and water managers distinguish meteorological, agricultural, hydrological, and socio-economic drought. Historically triggers in drought risk management have been demarcated solely in specialist hydrological science terms using indices and critical thresholds. This paper explores “drought thresholds” as a bridging concept for interdisciplinary science-narrative enquiry. The Eden catchment, Scotland acts as an exemplar, in a maritime country perceived as wet. The research forms part of creative experimentation in science-narrative methods played out in seven United Kingdom case-study catchments on hydro-meteorological gradients in the Drought Risk and You (DRY) project, with the agricultural Eden the most northerly. DRY explored how science and stories might be brought together to support better decision-making in United Kingdom drought risk management. This involved comparing specialist catchment-scale modelling of drought risk with evidence gathered from local narratives of drought perceptions/experiences. We develop the concept of thresholds to include perceptual triggers of drought awareness and impact within and between various sectors in the catchment (agriculture, business, health and wellbeing, public/communities, and natural and built environments). This process involved developing a framework for science-narrative drought “threshold thinking” that utilizes consideration of severity and scale, spatial and temporal aspects, framing in terms of enhancing or reducing factors internal and external to the catchment and new graphical methods. The paper discusses how this extended sense of thresholds might contribute to research and practice, involving different ways of linking drought severity and perception. This has potential to improve assessment of sectoral vulnerabilities, development of adaptive strategies of different stakeholders, and more tailored drought communication and messaging. Our findings indicate that drought risk presents many complexities within the catchment, given its cross-sectoral nature, rich sources of available water, variable prior drought experience among stakeholders, and different quantitative and perceptual impact thresholds across and within sectors. Fuzziness in identification of drought thresholds was multi-faceted for varied reasons. Results suggest that a management paradigm that integrates both traditional and non-traditional “fuzzy” threshold concepts across sectors should be integrated into current and future policy frameworks for drought risk management.

Highlights

  • Drought is a pervasive, diffuse, slow onset and hidden risk in the Anthropocene (Van Loon, 2016), presenting specific management challenges in different national contexts

  • The effect of precipitation decrease and increase in evaporation for the 1961–1975 period can be seen where the Reconnaissance Drought Index (RDI), calculated using potential evapotranspiration, and gross rainfall, revealed two extreme drought events when RDI was below -2 in 1973 and 1976

  • It was noticed that based on the RDI, the total percentage of the wet years equaled the total percentage of dry years, but extreme dry events occurred twice as often as extreme wet years (RDI >2 once in 1985, extreme wet year), RDI < -2)

Read more

Summary

INTRODUCTION

Diffuse, slow onset and hidden risk in the Anthropocene (Van Loon, 2016), presenting specific management challenges in different national contexts. Traditional Western evidence bases, drawn on to support environmental and hydro-meteorological decision-making for climate resilience, have tended to prioritize specialist science (Mazzocchi, 2006; Nakashima, 2016) This applies in the evidence used in statutory drought risk management with its focus on the science and statistics of rainfall, soil moisture, river flows, groundwater levels and water supply systems. Researchers are already exploring issues and opportunities in how lay and specialist scientific knowledge come together in drought risk decision-making in specific national contexts (e.g., Dagel, 1997 with drought severity indices and perception in marginal settings) This includes, more recently, Solano-Hernandez et al (2020) on convergence between satellite information and farmers’ drought perception in the Patagonian rangelands of Argentina; and Nguyen and Nguyen (2020), comparing potential biases in measured extreme weather data with those in self-reported weather shocks from rural households in Vietnam. This concern for identifying “thresholds,” as a bridging concept for interdisciplinary exploration within our research, provides valuable potential for science to learn from narrative approaches and meaning making (drawing on life experiences, oral histories, stories, diaries etc.), and for narrative to learn from science

AIMS
BACKGROUND
RESULTS
DISCUSSION
CONCLUSION
ETHICS STATEMENT

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.