Abstract

Despite being a valuable tool for evaluation of the kidneys, renal magnetic resonance (MR) imaging in clinical practice has been limited to depiction of anatomy and provides little diagnostic information about the health and function of the kidney in patients with chronic kidney disease (CKD) and diabetic nephropathy. In this issue, Peng et al (1) have used two MR imaging methods that go beyond depiction of anatomy to show renal function: renal blood oxygen level-dependent (BOLD) MR imaging, which shows oxygen levels in the kidney, and chemical shift-selective imaging, which shows the relative content of fat in the kidney parenchyma. In a mouse model of diabetes, Peng et al have shown higher fat and lower oxygen levels in kidneys of mice with diabetes than in those of normal controls. These MR imaging methods may help clarify the role of fat deposition and hypoxia in the progression of CKD. As the factors that contribute to the progression of CKD are better understood, ultimately more widespread clinical use for functional renal MR imaging protocols such as renal BOLD and chemical shift-selective imaging may be found to evaluate the severity of CKD and monitor the efficacy of clinical interventions, altering the course of disease progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call