Abstract

As planetary rovers expand their capabilities, traveling longer distances, deploying complex tools, and collecting voluminous scientific data, the requirements for intelligent guidance and control also grow. This, coupled with limited bandwidth and latencies, motivates onboard autonomy that ensures the quality of the science data return. Increasing quality of the data involves better sample selection, data validation, and data reduction. Robotic studies in Mars-like desert terrain have advanced autonomy for long distance exploration and seeded technologies for planetary rover missions. In these field experiments the remote science team uses a novel control strategy that intersperses preplanned activities with autonomous decision making. The robot performs automatic data collection, interpretation, and response at multiple spatial scales. Specific capabilities include instrument calibration, visual targeting of selected features, an onboard database of collected data, and a long range path planner that guides the robot using analysis of current surface and prior satellite data. Field experiments in the Atacama Desert of Chile over the past decade demonstrate these capabilities and illustrate current challenges and future directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.