Abstract

The selection of research topics by scientists can be viewed as an exploration process conducted by individuals with cognitive limitations traversing a complex cognitive landscape influenced by both individual and social factors. While existing theoretical investigations have provided valuable insights, the intricate and multifaceted nature of modern science hinders the implementation of empirical experiments. This study leverages advancements in Geographic Information System (GIS) techniques to investigate the patterns and dynamic mechanisms of topic-transition among scientists. By constructing the knowledge space across 6 large-scale disciplines, we depict the trajectories of scientists’ topic transitions within this space, measuring the flow and distance of research regions across different sub-spaces. Our findings reveal a predominantly conservative pattern of topic transition at the individual level, with scientists primarily exploring local knowledge spaces. Furthermore, simulation modeling analysis identifies research intensity, driven by the concentration of scientists within a specific region, as the key facilitator of topic transition. Conversely, the knowledge distance between fields serves as a significant barrier to exploration. Notably, despite potential opportunities for breakthrough discoveries at the intersection of subfields, empirical evidence suggests that these opportunities do not exert a strong pull on scientists, leading them to favor familiar research areas. Our study provides valuable insights into the exploration dynamics of scientific knowledge production, highlighting the influence of individual cognition, social factors, and the intrinsic structure of the knowledge landscape itself. These findings offer a framework for understanding and potentially shaping the course of scientific progress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call