Abstract

The Mauna Kea Adze Quarry Complex is the largest-known prehistoric quarry in the Pacific Basin. The main extraction areas are located at an extreme altitude (3,800 m), near the summit of Hawaii's tallest mountain. The Mauna Kea summit region and the quarry are considered by many Hawaiians to be a sacred landscape and archaeologists must consider the ethical tensions involved in conducting Western science in these areas. Although provenance studies of basalt adzes are integral to the examination of pre-contact Hawaiian economics, former studies of Hawaiian adze distribution have been limited in scope, and conventionally relied on destructive petrography and petrology for the analyses. Published geochemical data on the quarry are derived from only eight samples analyzed with destructive methods. In order to better define the variation within the quarry, and to develop a more culturally sensitive approach, we employed nondestructive energy dispersive X-ray fluorescence (EDXRF) of whole-rock samples to characterize 820 flakes and 47 geological samples from the quarry complex. This study offers the first reliable estimation of the overall range of geochemical variability in the complex. These results suggest that nondestructive EDXRF can be used to differentiate Mauna Kea basalts from other known Hawaiian quarries, but more characterization of other quarries is necessary to confirm exclusive separation of sources. The results further demonstrate that EDXRF is capable of detecting intra-site geochemical variation in Mauna Kea quarry material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call