Abstract
AbstractWith its ultra-large specific surface area, a nanoporous material is an ideal, yet relatively unexplored, platform for accepting or actuating liquids, with potential performance gains for energy dissipation and output typical of disruptive technologies. Our experimental and theoretical results indicate either dramatically improved performance or unique combinations of properties and capabilities not attainable in conventional materials, which make the novel nanoporous structures studied herein very attractive as advanced protective intelligent systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.