Abstract

Sharing scientific data and information is often cited within academic literature as an initial step of water cooperation, but the transfer of research findings into policy and practice is often slow and inconsistent. Certain attributes—including salience, credibility, and legitimacy of scientific information; iterative information production; and sociocultural factors—may influence how easily scientific information can be used in management and policymaking. However, transnationality usually complicates these sorts of interactions. Accordingly, we argue that the production of scientific information and transboundary water cooperation build upon each other bidirectionally, each informing and enhancing the other. We employ a case-study analysis of the Transboundary Aquifer Assessment Program (TAAP), a binational collaborative effort for scientific assessment of aquifers shared between Mexico and the United States. Here, information sharing was possible only by first completing a formal, jointly agreed-upon cooperative framework in 2009. This framework resulted in a collaborative science production process, suggesting that the relationship between sharing data and information and transboundary groundwater governance is iterative and self-reinforcing. In keeping with the publication of the TAAP’s first binational scientific report in 2016, we demonstrate the bidirectional relationship between science production and water governance in the TAAP and explore remaining challenges after scientific assessment.

Highlights

  • The arid to semiarid region of the southwestern United States (US) and northwesternMexico is water-short in most of its geographical reach

  • This article argues, using the case study of the Transboundary Aquifer Assessment Program (TAAP) Sonora–Arizona assessments as an example, that transboundary groundwater governance and the production of scientific information evolve in reciprocal synchronicity—cooperation can enhance science production, and science can lead to advancements in policy

  • Both are needed for transboundary groundwater governance, as they are in nontransboundary situations

Read more

Summary

Introduction

The arid to semiarid region of the southwestern United States (US) and northwesternMexico is water-short in most of its geographical reach. Climate-change predictions indicate rising temperatures and increased variability in precipitation patterns, leading to water supply reductions by the middle of the 21st century [1,2,3]. This hydrological variability affects groundwater basins; the southwestern US is likely to experience declines in groundwater recharge, including in basins such as the San Pedro [4] and Santa Cruz [5,6]. Mexico and the US share four river basins The two that are by far the largest, the Colorado and Rio Grande/Rio Bravo basins, encompass almost the entirety of the border region. While surface-water agreements govern and manage the binational Tijuana, 4.0/)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call