Abstract

Perineural administration of the naturally occurring vanilloids (capsaicin, resiniferatoxin [RTX]) produces selective nociceptive blockade. Studies using perineural vanilloids in high concentrations suggest that they can cause a degeneration of unmyelinated fibers. However, electron microscopic studies of local vanilloid toxicity produced conflicting outcomes. In the present study, we sought to determine whether RTX-induced reversible sciatic nerve block results in the degenerative changes of unmyelinated fibers. In rat experiments, RTX was administered percutaneously at the sciatic nerve. The effect of RTX was monitored by measuring the rat's response to noxious heat. The sciatic nerves were removed 48 h after the blockade initiation. Quantitative electron microscopic evaluation of the unmyelinated fibers was performed in three groups of animals: RTX 0.0001% (0.1 microg), RTX 0.001% (1 microg), and control (RTX vehicle, 0.1 mL). Cross-sections of the sciatic nerve 48 h after the initiation of RTX-induced reversible nerve blockade appeared essentially normal. One rarely observed finding was the irregularly compacted membranous deposits in the unmyelinated axons. The frequency of this finding was approximately one per thousand fibers with both concentrations of RTX. The results of the study suggest that a selective and long-lasting sciatic nerve block (up to 2 wk) can be provided by RTX without any significant damage to the unmyelinated nerve fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.