Abstract

To characterize the plastic scintillation detectors (PSDs) response in the diagnostic energy range. A fast and adaptable method for real-time dosimetry in superficial x-ray therapy and interventional radiology is proposed. A PSD (1 mm diameter and 10 mm long) is coupled to a 5 m long optical fiber. Scintillation photons are guided to a polychromatic photodiode which provides an electrical current proportional to the input light signal. If the incident energy spectrum is known, the dose measured in the PSD's polystyrene sensitive volume can be converted to score dose in any other media such as air, water or soft tissues using the large cavity theory (LCT). A software simulating x-ray tube spectra and filtration has been benchmarked and is used for analysis. The method is confirmed by Monte Carlo simulations. PSDs cannot be assumed energy independent with low-energy photons as a factor 2 has been observed in the energy response between 80 kVp and 150 kVp. When the dose is converted to the desired medium, the PSD's energy dependence is compensated and a 2.1% standard deviation was observed upon the studied energy ranges, which is inside the measurement and calculation uncertainties. Percent depth dose (PDD) measurements are in good agreement with Monte Carlo simulations and results can be improved if the proposed method is applied to compensate beam hardening. PSDs present great potential for real-time dose measurements with radiologic photon energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.