Abstract
Unified Parallel C (UPC) is a programming model for shared-memory parallel computing on shared- and distributed-memory systems. The Berkeley UPC software, which operates on top of their Global Addressing Space Networking (GASNet) communication system, is a portable, high-performance implementation of UPC for large-scale clusters. The Scalable Coherent Interface (SCI), a torus-based system-area network (SAN), is known for its ability to provide very low latency transfers as well as its direct support for both shared-memory and message-passing communications. High-speed clusters constructed around SCI promise to he a potent platform for large-scale UPC applications. This work introduces the design of the core API for the new SCI conduit for GASNet and UPC, which is based on active messages (AM). Latency and bandwidth data were collected and are compared with raw SCI results and with other existing GASNet conduits. The outcome shows that the new GASNet SCI conduit is able to provide promising performance in support of UPC applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.