Abstract

With high specificity for malignant breast lesions, dedicated-breast molecular imaging systems such as positron emission mammography (PEM) have potential to improve the sensitivity of cancer in women with radio-dense breasts and to reduce the false-positive rate of breast screening when used as a diagnostic adjunct. For high signal-to-noise ratio and to minimize the patient dose, scintillation detectors in a PEM system must have high annihilation photon detection efficiency. This efficiency can be increased by accepting annihilation photons from wider incident angles and by using depth-of-interaction (DOI) measurement within a scintillation crystal to minimize parallax blurring. We have developed a dual-ended readout block (DERB) detector that uses asymmetry of signals from photodetectors on either end of a scintillation array to measure DOI and uses Anger Logic with light sharing to identify interacting crystal elements while minimizing the number of photodetectors required. A prototype DERB detector was constructed from two arrays of silicon photomultipliers (SiPM), two glass optical diffusers, and an array of LYSO scintillation crystals. Assembled, each of the 2 × 2 SiPM arrays detect photons that are dispersed via the optical light diffusers originating from either end of 3 × 3 scintillation crystal elements. We evaluated the ability of the detector to identify the crystal index, resolve DOI, and discriminate energy. The DERB detector was able to clearly identify interacting crystal elements, to measure DOI with ̃5mm resolution in 2mm × 2mm × 20mm crystals, and to achieve an average energy resolution of ̃20%. The DERB detector characteristics suggest that it can be used to reduce the parallax effect in PEM systems without increasing the number of required photodetectors. Further investigation is warranted to improve performance with high optical photon detection efficiency photodetectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.