Abstract

In recent years, a sufficient condition for determining chaotic behaviours of the non-linear systems has been characterized by the negative Schwarzian derivative (Hacibekiroǧlu et al, Nonlinear Anal.: Real World Appl. 10, 1270 (2009)). In this work, the Schwarzian derivative has been calculated for investigating the quantum chaotic transition points in the high-temperature superconducting frame of reference, which is known as a nonlinear dynamical system that displays some macroscopic quantum effects. In our previous works, two quantum chaotic transition points of the critical transition temperature, T c, and paramagnetic Meissner transition temperature, T PME, have been phenomenologically predicted for the mercury-based high-temperature superconductors (Onbasli et al, Chaos, Solitons and Fractals 42, 1980 (2009); Aslan et al, J. Phys.: Conf. Ser. 153, 012002 (2009); Cataltepe, Superconductor (Sciyo Company, India, 2010)). The T c, at which the one-dimensional global gauge symmetry is spontaneously broken, refers to the second-order phase transition, whereas the T PME, at which time reversal symmetry is broken, indicates the change in the direction of orbital current in the system (Onbasli et al, Chaos, Solitons and Fractals 42, 1980 (2009)). In this context, the chaotic behaviour of the mercury-based high-temperature superconductors has been investigated by means of the Schwarzian derivative of the magnetic moment versus temperature. In all calculations, the Schwarzian derivatives have been found to be negative at both T c and T PME which are in agreement with the chaotic behaviour of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.