Abstract

Heat equations with distributed delay are a class of mathematic models that has wide applications in many fields. Numerical computation plays an important role in the investigation of these equations, because the analytic solutions of partial differential equations with time delay are usually unavailable. On the other hand, duo to the delay property, numerical computation of these equations is time-consuming. To reduce the computation time, we analyze in this paper the Schwarz waveform relaxation algorithm with Robin transmission conditions. The Robin transmission conditions contain a free parameter, which has a significant effect on the convergence rate of the Schwarz waveform relaxation algorithm. Determining the Robin parameter is therefore one of the top-priority matters for the study of the Schwarz waveform relaxation algorithm. We provide new formula to fix the Robin parameter and we show numerically that the new Robin parameter is more efficient than the one proposed previously in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.