Abstract

Vascular network reconstruction plays a pivotal role in the axonal regeneration and nerve function recovery after peripheral nerve injury. Increasing evidence indicates that Schwann cells (SCs) can promote nerve function repair, and the beneficial effects attributed to SCs therapy may exert their therapeutic effects through paracrine mechanisms. Recently, the previous research of our group demonstrated the promising neuroregenerative capacity of Schwann-like cells (SCLCs) derived from differentiated human embryonic stem cell-derived neural stem cells (hESC-NSCs) in vitro. Herein, the effects of SC-like cell conditioned medium (SCLC-CM) on angiogenesis and nerve regeneration were further explored. The assays were performed to show the pro-angiogenic effects of SCLC-CM, such as promoted endothelial cell proliferation, migration and tube formation in vitro. In addition, Sprague-Dawley rats were treated with SCLC-CM after sciatic nerve crush injury, SCLC-CM was conducive for the recovery of sciatic nerve function, which was mainly manifested in the SFI increase, the wet weight ratio of gastrocnemius muscle, as well as the number and thickness of myelin. The SCLC-CM treatment reduced the Evans blue leakage and increased the expression of CD34 microvessels. Furthermore, SCLC-CM upregulated the expressions of p-Akt and p-mTOR in endothelial cells. In conclusion, SCLC-CM promotes angiogenesis and nerve regeneration, it is expected to become a new treatment strategy for peripheral nerve injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.