Abstract
The author shows that if the dual of a Musielak–Orlicz sequence space lΦ is a stabilized asymptotic l∞, space with respect to the unit vector basis, then lΦ is saturated with complemented copies of l1 and has the Schur property. A sufficient condition is found for the isomorphic embedding of lp spaces into Musielak–Orlicz sequence spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.