Abstract

Let G be an exceptional Lie group with a maximal torus T. Based on common properties in the Schubert presentation of the cohomology ring H*(G/T;F_{p}) DZ1, and concrete expressions of generalized Weyl invariants for G over F_{p}, we obtain a unified approach to the structure of H*(G;F_{p}) as a Hopf algebra over the Steenrod algebra A_{p}. The results has been applied in Du2 to determine the near--Hopf ring structure on the integral cohomology of all exceptional Lie groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.