Abstract

Ciboria ploettneriana, Schroeteria decaisneana, and S. poeltii produce morphologically very similar apothecia emerging from fallen stromatized seeds of Veronica spp., the former two on V. hederifolia agg. in temperate central Europe and S. poeltii on V. cymbalaria in mediterranean southern Europe. They are described and illustrated in detail based on fresh collections or moist chamber cultures of infected seeds. A key is provided to differentiate the three species from their teleomorphs. For the first time, connections between two teleomorphs and two Schroeteria anamorphs are reported. Members of the anamorph-typified genus Schroeteria are known as host-specific plant parasites that infect seeds of different Veronica spp. In earlier times, they were classified in the Ustilaginales (Basidiomycota), but since more than 30 years, they are referred to as false smut fungi producing smut-like chlamydospores, based on light microscopic and ultrastructural studies which referred them to the Sclerotiniaceae (Helotiales). During the present study, rDNA sequences were obtained for the first time from chlamydospores of Schroeteria bornmuelleri (on V. rubrifolia), S. decaisneana (on V. hederifolia), S. delastrina (generic type, on V. arvensis), and S. poeltii (on V. cymbalaria) and from apothecia of C. ploettneriana, S. decaisneana, and S. poeltii. As a result, the anamorph-teleomorph connection could be established for S. decaisneana and S. poeltii by a 100% ITS similarity, whereas C. ploettneriana could not be connected to a smut-like anamorph. Ciboria ploettneriana in the here-redefined sense clustered in our combined phylogenetic analyses of ITS and LSU in relationship of Sclerotinia s.l., Botrytis, and Myriosclerotinia rather than Ciboria, but its placement was not supported. Its affiliation in Ciboria was retained until a better solution is found. Also Schroeteria poeltii clustered unresolved in this relationship but with a much higher molecular distance. The remaining three Schroeteria spp. formed a strongly supported monophyletic group, here referred to as “Schroeteria core clade”, which clustered with medium to high support as a sister clade of Monilinia jezoensis, a member of the Monilinia alpina group of section Disjunctoriae. We observed ITS distances of 5–6.3% among members of the Schroeteria core clade, but 13.8–14.7% between this clade and S. poeltii, which appears to be correlated with the deviating chlamydospore morphology of S. poeltii. Despite its apparent paraphyly, Schroeteria is accepted here in a wide sense as a genus distinct from Monilinia, particularly because of its very special anamorphs. A comparable heterogeneity in rDNA analyses was observed in Monilinia and other genera of Sclerotiniaceae. Such apparent heterogeneity should be met with skepticism, however, because the inclusion of protein-coding genes in phylogenetic analyses resulted in a monophyletic genus Monilinia. More sclerotiniaceous taxa should be analysed for protein-coding genes in the future, including Schroeteria. Four syntype specimens of Ciboria ploettneriana in B were reexamined in the present study, revealing a mixture of the two species growing on V. hederifolia agg. Based on its larger ascospores in comparison with S. decaisneana, a lectotype is proposed for C. ploettneriana.

Highlights

  • The family Sclerotiniaceae comprises about 150 mainly plant parasitic species in 28 accepted genera (Baral 2016)

  • Considering the interspecific distances among the Schroeteria species and the identity of the host species, our result proves that teleomorph and anamorph belong together

  • The S1506 intron is absent in all sequences in which the 3'-end region of SSU was included

Read more

Summary

Introduction

The family Sclerotiniaceae comprises about 150 mainly plant parasitic species in 28 accepted genera (Baral 2016). Most of these genera are pleomorphic, producing apothecia (teleomorph, sexual) and a conidial state (anamorph, asexual), but some are still without a known teleomorph. A main characteristic of the Sclerotiniaceae and the closely related, paraphyletic, necrotrophic to parasitic Rutstroemiaceae is the amyloid ascus apical ring of the Sclerotinia-type (Baral 1987, Verkley 1993). Members of both families have usually brownish coloured apothecia, and their stipe base is often blackish. Sclerotiniaceae generally have at their flanks of the receptacle an ectal excipulum of textura globulosa which often includes rhomboid crystals, whereas Rutstroemiaceae mostly have a textura prismatica without crystals (Baral 2016)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call