Abstract

The functional Schrödinger representation of a scalar field on an [Formula: see text]-dimensional static space-time background is argued to be a singular limiting case of the hypercomplex quantum theory of the same system obtained by the precanonical quantization based on the space-time symmetric De Donder–Weyl Hamiltonian theory. The functional Schrödinger representation emerges from the precanonical quantization when the ultraviolet parameter [Formula: see text] introduced by precanonical quantization is replaced by [Formula: see text], where [Formula: see text] is the time-like tangent space Dirac matrix and [Formula: see text] is an invariant spatial [Formula: see text]-dimensional Dirac’s delta function whose regularized value at [Formula: see text] is identified with the cutoff of the volume of the momentum space. In this limiting case, the Schrödinger wave functional is expressed as the trace of the product integral of Clifford-algebra-valued precanonical wave functions restricted to a certain field configuration and the canonical functional derivative Schrödinger equation is derived from the manifestly covariant Dirac-like precanonical Schrödinger equation which is independent of a choice of a codimension-one foliation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call