Abstract

The polarized T3 Gowdy model is, in a standard gauge, characterized by a point particle degree of freedom and a scalar field degree of freedom obeying a linear field equation on R × S1. The Fock representation of the scalar field has been well studied. We construct the Schrödinger representation for the scalar field at a fixed value of the Gowdy time in terms of square-integrable functions on a space of distributional fields with a Gaussian probability measure. We show that ‘typical’ field configurations are slightly more singular than square-integrable functions on the circle. For each time the corresponding Schrödinger representation is unitarily equivalent to the Fock representation, and hence all the Schrödinger representations are equivalent. However, the failure of unitary implementability of time evolution in this model manifests itself in the mutual singularity of the Gaussian measures at different times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.