Abstract
AbstractWe study the existence of positive solutions for a class of systems which strongly couple a quasilinear Schrödinger equation driven by a weighted ‐Laplace operator and without the mass term, and a higher‐order fractional Poisson equation. Since the system is set in , the limiting case for the Sobolev embedding, we consider nonlinearities with exponential growth. Existence is proved relying on the study of a corresponding Choquard equation in which the Riesz kernel is a logarithm, hence sign‐changing and unbounded from above and below. This is in turn solved by means of a variational approximating procedure for an auxiliary Choquard equation, where the logarithm is uniformly approximated by polynomial kernels. Our results are new even in the planar case .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.