Abstract

The construction, operation, and performance of a linear in-frared focal plane array employing platinum silicide Schottky-barrier detectors is described. The 1 x256 element array is fabricated with standard integrated-circuit-grade silicon and NMOS processing. This device uses a digital scan readout scheme consisting of a digital shift register and associated MOSFET switches. The inherent advantage of the digital scan read-out is that large signal levels can be handled without saturation. As a result, the pixel size can be made quite large (i.e., high aspect ratios are possible), thus maximizing sensitivity. This is particularly important in spectroscopy applications. In addition, the digital scan readout structure is less susceptible to freeze-out at temperatures below 40 K when compared with other types of readout structures. The array is operated with two-phase clocking, which is relatively simple and not critical to the performance of the device. The device exhibits a very high reverse breakdown voltage Vrb of 30 V, a quantum efficiency coefficient C1 of 42%/eV, and a long-wavelength cutoff Xc of 5.4µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.