Abstract

ABSTRACTGaN layers on sapphire substrates were grown by metalorganic chemical vapor deposition using in situ porous SiNx nano-network. Crystalline quality of epilayers was characterized by X-ray rocking curve scans, and the full width at hall maximum values for (002) and (102) diffractions were improved from 252 arc sec and 405 arc sec, respectively, in control samples to 216 arc sec and 196 arc sec when SiNx was used. Ni/Au Schottky diodes (SDs) were fabricated and the SD performance was found to be critically dependent on the SiNx coverage (fewer and farther the pores the better the results) which is consistent with the trends of XRD and photoluminescence data. A 1.13eV barrier height was achieved when 5min SiNx layer was used compared with 0.78 eV without any SiNx nanonetwork. Furthermore, the breakdown voltage improved from 76 V to 250V when SiNx nanonetwork was used in otherwise identical structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.