Abstract

Efficiently removing tetracycline hydrochloride (TC) while preventing toxic intermediates is a significant challenge. A novel photocatalysis-in-situ-self-Fenton catalyst, RF/EA-Fe@Ti3C2, removed 92% of TC (20mgL-1, 100mL) under visible light irradiation within 80min. The results of optical thickness and local volumetric rate of photon absorption demonstrated that RF/EA-Fe@Ti3C2 had superior light capture ability than that of RF/EA-Fe. TC significantly inhibited wheat seed germination, seedling growth, and chlorophyll and carotenoid generation, whereas its intermediates had a lesser effect. Additionally, TC damaged the photosystem II (PSII) of wheat seedlings, reducing light response ability and energy capture efficiency, while TC intermediates caused damage similar to deionized water. The rapid TC degradation and low-ecotoxic intermediates stem from the synergistic effects between photogenerated holes and hydroxyl radicals. This study advanced the design of photocatalysis-in-situ-self-Fenton systems for antibiotic degradation and detoxification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.