Abstract

Reduced graphene oxide (RGO)/Si Schottky diode has been reported nowadays to show excellent performances in photodetection and other photoelectrical devices. Different from pure graphene, there are large amounts of function groups and structural defects left on the base plane of RGO, which may influence the interfacial properties of RGO/Si Schottky diode. Herein, the barrier inhomogeneity and junction characteristics were systematically investigated to help to describe the interface of RGO/Si diode. From the perspective of its applications, the influences of gas molecule and noise properties are considered to be important. Thus, the photovoltaic performance of RGO/Si devices in air and vacuum is investigated to analyze their effects. Meanwhile, 1/f noise of RGO/Si diodes is investigated under air/vacuum conditions and varied temperatures. It is found that the devices in vacuum and under higher power incident light show much lower 1/f noise. These results are meaningful to the noise control and performance improvement in the development of Schottky diode based devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call