Abstract

In this paper, we have proposed a novel impact ionization MOS (I-MOS) structure, called the Schottky bipolar I-MOS, with Schottky source and drain electrodes and utilizing the open-base bipolar junction transistor (BJT) configuration for achieving reduction in the operating voltage of the I-MOS transistor. We report, using 2-D simulations, a low operating voltage (∼1.1 V) and a low subthreshold swing (∼3.6 mV/Decade). For the corresponding p-i-n I-MOS, the operating voltage is ∼5.5 V. The operating voltage of the Schottky bipolar I-MOS is the lowest reported operating voltage for silicon based I-MOS transistors. The nearly 80% reduction in the operating voltage of the Schottky bipolar I-MOS makes it suitable for applications requiring low operating voltages. The Schottky bipolar I-MOS is also expected to have an improved reliability over the p-i-n I-MOS since high energy carriers, induced by impact ionization near the drain, do not have to pass under the gate region in the channel. The use of Schottky contacts instead of heavily doped source and drain regions and the low channel doping level reduces the required thermal budget for device fabrication. The low operating voltage, low subthreshold swing and possibly improved reliability of the Schottky bipolar I-MOS, makes it a potential solution for applications where steep subthreshold slope transistors are being explored as alternative to the conventional MOS transistor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.