Abstract

Understanding of the Schottky barriers formed at metal contact-InAs nanowire interfaces is of great importance for the development of high-performance InAs nanowire nanoelectronic and quantum devices. Here, we report a systematical study of InAs nanowire field-effect transistors (FETs) and the Schottky barrier heights formed at the contact-nanowire interfaces. The InAs nanowires employed are grown by molecular beam epitaxy and are high material quality single crystals, and the devices are made by directly contacting the nanowires with a series of metals of different work functions. The fabricated InAs nanowire FET devices are characterized by electrical measurements at different temperatures and the Schottky barrier heights are extracted from the measured temperature and gate-voltage dependences of the channel current. We show that although the work functions of the contact metals are widely spread, the Schottky barrier heights are determined to be distributed over 35–55 meV, showing a weak but not negligible dependence on the metals. The deduced Fermi level in the InAs nanowire channels is found to be in the band gap and very close to the conduction band. The physical origin of the results is discussed in terms of Fermi level pinning by the surface states of the InAs nanowires and a shift in pinned Fermi level induced by the metal-related interface states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.