Abstract
In a big data environment, traditional recommendation methods have limitations such as data sparseness and cold start, etc. In view of the rich semantics, excellent quality, and good structure of knowledge graphs, many researchers have introduced knowledge graphs into the research about recommendation systems, and studied interpretable recommendations based on knowledge graphs. Along this line, this paper proposes a scholar recommendation method based on the high-order propagation of knowledge graph (HoPKG), which analyzes the high-order semantic information in the knowledge graph, and generates richer entity representations to obtain users’ potential interest by distinguishing the importance of different entities. On this basis, a dual aggregation method of high-order propagation is proposed to enable entity information to be propagated more effectively. Through experimental analysis, compared with some baselines, such as Ripplenet, RKGE and CKE, our method has certain advantages in the evaluation indicators AUC and F1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Semantic Web and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.