Abstract
Let T be a C2-expanding self-map of a compact, connected, C∞, Riemannian manifold M. We correct a minor gap in the proof of a theorem from the literature: the set of points whose forward orbits are nondense has full Hausdorff dimension. Our correction allows us to strengthen the theorem. Combining the correction with Schmidt games, we generalize the theorem in dimension one: given a point x0 ∊ M, the set of points whose forward orbit closures miss x0 is a winning set. Finally, our key lemma, the no matching lemma, may be of independent interest in the theory of symbolic dynamics or the theory of Markov partitions.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.