Abstract
AWAKE develops a new plasma wakefield accelerator using the CERN SPS proton bunch as a driver Muggli et al. (2017). The proton bunch propagates through a 10m long rubidium plasma, induced by an ionizing laser pulse. The co-propagation of the laser pulse with the proton bunch seeds the self modulation instability of the proton bunch that transforms the bunch to a train with hundreds of bunchlets which drive the wakefields. Therefore the plasma radius must exceed the proton bunch radius. Schlieren imaging is proposed to determine the plasma radius on both ends of the vapor source. We use Schlieren imaging to estimate the radius of a column of excited rubidium atoms. A tunable, narrow bandwidth laser is split into a beam for the excitation of the rubidium vapor and for the visualization using Schlieren imaging. With a laser wavelength very close to the D2 transition line of rubidium (λ≈780nm), it is possible to excite a column of rubidium atoms in a small vapor source, to record a Schlieren signal of the excitation column and to estimate its radius. We describe the method and show the results of the measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.