Abstract
Healthy siblings of schizophrenia patients have an almost 9-fold higher risk for developing the illness than the general population. Disruption of white matter (WM) integrity as indicated by reduced fractional anisotropy (FA) derived from diffusion tensor imaging (DTI), is believed to be the key substrate of schizophrenia. However, it remains unclear whether schizophrenia patients and their healthy siblings share a specific pattern of disruption of WM integrity that may be related to the disease risk. The objective of this study is to determine whether a specific brain regional pattern of disruption of WM integrity is shared by schizophrenia patients and their healthy siblings. We investigated brain white matter abnormalities by voxel-based analysis of white matter FA data acquired from diffusion tensor imaging in 34 pairs of schizophrenia patients and their healthy siblings, as well as in 32 healthy controls. Both schizophrenia patients and their healthy siblings showed reduced white matter FA in the left prefrontal cortex and the hippocampus in comparison to healthy controls, without significant difference between patients and siblings. In marked contrast, only schizophrenia patients exhibited reduced white matter FA in the left anterior cingulate cortex in comparison to both siblings and controls, without significant difference between siblings and controls. Thus, schizophrenia patients and their healthy siblings share disruption of WM integrity in the left prefrontal cortex and the hippocampus that may be related to higher risk of healthy siblings to develop schizophrenia, which may be eventually attributed to additional disruption of WM integrity in the left anterior cingulate cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.