Abstract

Schizophrenia is a severe mental disorder associated with a wide spectrum of cognitive and neurophysiological dysfunctions. Early diagnosis is still difficult and based on the manifestation of the disorder. In this study, we have evaluated whether machine learning techniques can help in the diagnosis of schizophrenia, and proposed a processing pipeline in order to obtain machine learning classifiers of schizophrenia based on resting state EEG data. We have computed well-known linear and non-linear measures on sliding windows of the EEG data, selected those measures which better differentiate between patients and healthy controls, and combined them through principal component analysis. These components were finally used as features in five standard machine learning algorithms: k-nearest neighbours (kNN), logistic regression (LR), decision trees (DT), random forest (RF) and support vector machines (SVM). Complexity measures showed a high level of ability in differentiating schizophrenia patients from healthy controls. These differences between groups were mainly located in a delimited zone of the right brain hemisphere, corresponding to the opercular area and the temporal pole. Based on the area under the curve parameter in receiver operating characteristic curve analysis, we obtained high classification power in almost all of the machine learning algorithms tested: SVM (0.89), RF (0.87), LR (0.86), kNN (0.86) and DT (0.68). Our results suggest that the proposed processing pipeline on resting state EEG data is able to easily compute and select a set of features which allow standard machine learning algorithms to perform very efficiently in differentiating schizophrenia patients from healthy subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.