Abstract

AbstractSchizophrenia is a disorder characterized by a variety of symptoms, which among others include hallucinations, delusions and passivity experiences. It has been found that individuals with schizophrenia misattribute their own thoughts and actions to an outside agency (source monitoring deficits), which could account for psychotic experiences such as that of hearing voices. In order to explain the source-monitoring deficits as well as psychosis, it has been proposed that mechanisms that enable anticipation and recognition of sensory consequences of one’s own actions are impaired in schizophrenia. Importantly, such mechanisms may require accurate cortical sensory representations such as in the primary somatosensory cortex (S1). The establishment and maintenance of cortical sensory representations has been found to utilize a sleep-related brain rhythm known as spindling. Namely, in the perinatal period in humans and animals, and possibly also thereafter, spontaneous activity in the sensory periphery drives spindle activity in the developing cortical sensory areas, which then contributes to the formation of sensory representations that match bodily features. For example, muscle twitch-spindle sequences during sleep facilitate the formation and maintenance of S1 in accordance with the layout of musculature. This process has been proposed to continue throughout the lifespan and may be particularly important during periods of bodily changes (adolescence, menopause). In schizophrenia, the amount of sleep spindle activity is markedly reduced, which would be expected to result in insufficient cortical sensory representations and have relevance for the relative inability of individuals with schizophrenia to accurately recognize self-initiated actions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call