Abstract
Schistosomiasis is classified by WHO as a neglected tropical disease. Recent research works have shown that large-scale development projects involving massive population displacement and water irrigation, such as the construction of dams, lakes, and the development of agricultural areas, favour the proliferation of bilharzia. These observations motivate us to propose a reaction–diffusion model to assess the role of the displacements of humans, snails, cercaria, miracidia in the transmission dynamics of Schistosomiasis. The model incorporates a general non-linear contact functions and density-dependent parameters. The aim is to better understanding the role of spatial interactions on the spread of Schistosomiasis, in order to propose appropriate recommendations for the control of that silent threat. We characterize the basic reproduction number R0 of the model. The uniform persistence theory, the maximum principle are used to conduct an in-depth analysis of both the homogeneous and heterogeneous models. Theoretical results are illustrated through numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.