Abstract

AimsSchisandra is a good choice in Traditional Chinese Medicine for the therapy of cardiovascular diseases, but whether it contains a or some specific component (s) responsible these effects are still unclear. In the present study, we explored whether Schisantherin A (SCA) causes vasorelaxation in isolated rat thoracic aorta. Main methodsWe selected SCA, one of the main monomers of lignans from Schisandra, to examine its vasorelaxant effect on the isolated rat thoracic aorta and also exploited several tool inhibitors to probe its underlying mechanisms. Key findingsSCA produced relaxation concentration-dependently on the endothelium-intact (43.56 ± 2.17%) and endothelium-denuded thoracic aorta strips (18.76 ± 3.95%) pre-contracted by phenylephrine (PE). However, after treated with indomethacin or L-NAME, SCA showed only partial vasorelaxant effects. Whereas, this vasorelaxation by SCA was not changed with specific K+-channel inhibitors, i.e. barium chloride (BaCl2), 4-aminopyridine (4-AP), tetraethylamine (TEA), and glibenclamide. SCA had no effect on the aorta strips pre-contracted by PE in neither Ca2+-free nor CaCl2 conditions. But, in the Ca2+ free and high K+ environment, SCA partly abolished the vasocontraction induced by CaCl2. SignificanceIt was the first report to demonstrate that SCA had endothelium-dependent and -independent vasorelaxant effects on the isolated rat thoracic aorta, and the underlying mechanisms might be involved into its promoting the production of nitric oxide (NO) and prostacyclin (PGI2), and inhibiting the voltage-dependent calcium channels (VDCCs) opening. This study may partially explain the use of Schisandra in cardiovascular diseases and facilitate further drug development as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.