Abstract

The effects of the schisandrin B stereoisomers, (+/-)gamma-schisandrin [(+/-)gamma-Sch] and (-)schisandrin B [(-)Sch B], on hypoxia/reoxygenation-induced apoptosis were investigated in AML12 hepatocytes. Changes in cellular reduced glutathione (GSH) levels, Ca(2+)-induced mitochondrial permeability transitions (MPTs) and mitochondrial membrane potentials (Deltapsi(m) values) were also examined in (+/-)gamma-Sch- and (-)Sch B-treated cells, without or with hypoxia/reoxygenation challenge. The (+/-)gamma-Sch/(-)Sch B pretreatments (2.5-5.0 microm) protected against hypoxia/reoxygenation-induced apoptosis in AML12 cells in a concentration-dependent manner, with the (-)Sch B effect being more potent. Drug antiapoptotic effects were further evidenced by suppression of hypoxia/reoxygenation-induced mitochondrial cytochrome c release and subsequent cleavage of caspase 3 and poly-ADP-ribose polymerase by (-)Sch B pretreatment. Whereas hypoxia/reoxygenation challenge increased the extent of Ca(2+)-induced MPT pore opening, and Deltapsi(m), in AML12 hepatocytes, cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B pretreatment against hypoxia/reoxygenation-induced apoptosis was associated with a decreased sensitivity to Ca(2+)-induced MPT and an increased Deltapsi(m) in both unchallenged and challenged cells, compared with the drug-free control. The results indicate that (+/-)gamma-Sch/(-)Sch B pretreatment protected against hypoxia/reoxygenation-induced apoptosis in AML12 hepatocytes and that the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B may at least in part be mediated by a decrease in sensitivity to Ca(2+)-induced MPT, which may in turn result from enhancement of cellular GSH levels by drug pretreatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call