Abstract

MiR-34 family members have been previously shown to play potential functional role in Parkinson's disease (PD) pathogenesis. However, the regulatory role of miR-34a has not been demonstrated in PD yet. This study aims to clarify the potential neuroprotective effect of Schisandrin B (Sch B) involving miR-34a function in 6-OHDA-induced PD model. The expression changes of miR-34a and Nrf2 pathway related genes were detected in 6-OHDA-treated SH-SY5Y cells under Sch B pretreatment. Cell viability and PD feathers of 6-OHDA-induced PD mice were measured for neuroprotection assessment. The regulation of miR-34a on Nrf2 activity and expression was demonstrated through gain-of-function and loss-of-function studies, while the regulatory role of miR-34a in the neuroprotection of Sch B was investigated both in vitro and in vivo. Sch B pretreatment ameliorated 6-OHDA-induced changes in vitro, like upregulated miR-34a expression, inhibited Nrf2 pathways and decreased cell survival, and PD feathers in vivo. Moreover, Nrf2 was negatively regulated by miR-34a, while miR-34a overexpression inhibited the neuroprotection of Sch B in both dopaminergic SH-SY5Y cells and PD mice. Sch B showed neuroprotective effect in 6-OHDA-induced PD pathogenesis, which could be inhibited by miR-34a, involving the negative regulatory mechanism of miR-34a on Nrf2 pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.